Robust Centralized Fusion Kalman Filters with Uncertain Noise Variances

نویسندگان

  • Wen-juan Qi
  • Peng Zhang
  • Zi-li Deng
چکیده

This paper studies the problem of the designing the robust local and centralized fusion Kalman filters for multisensor system with uncertain noise variances. Using the minimax robust estimation principle, the centralized fusion robust time-varying Kalman filters are presented based on the worst-case conservative system with the conservative upper bound of noise variances. A Lyapunov approach is proposed for the robustness analysis and their robust accuracy relations are proved. It is proved that the robust accuracy of robust centralized fuser is higher than those of robust local Kalman filters. Specially, the corresponding steady-state robust local and centralized fusion Kalman filters are also proposed and the convergence in a realization between time-varying and steady-state Kalman filters is proved by the dynamic error system analysis (DESA) method and dynamic variance error system analysis (DVESA) method. A Monte-Carlo simulation example shows the robustness and accuracy relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Weighted Measurement Fusion Kalman Predictors with Uncertain Noise Variances

For the multisensor system with uncertain noise variances, using the minimax robust estimation principle, the local and weighted measurement fusion robust time-varying Kalman predictors are presented based on the worst-case conservative system with the conservative upper bound of noise variances. The actual prediction error variances are guaranteed to have a minimal upper bound for all admissib...

متن کامل

Robust Covariance Intersection Fusion Steady-State Kalman Filter with Uncertain Parameters

For the linear discrete time-invariant system with uncertain parameters and known noise variances, a robust covariance intersection (CI) fusion steady-state Kalman filter is presented by the new approach of compensating the parameter uncertainties by a fictitious noise. Based on the Lyapunov equation approach, it is proved that for the prescribed upper bound of the fictitious noise variances, t...

متن کامل

Optimal Fusion Algorithm Based on Multi-Sensor Tracking

An optimal fusion algorithm for tracking maneuvering target based on centralized structure of multisensor is proposed. This algorithm is implemented with two filters and fuzzy logic using state fusion, together with the current statistic model and adaptive filtering. Firstly, the optimal weighting coefficients are obtained using the stochastic approximation theory, a suitable method of estimati...

متن کامل

Multiple-sensor Fusion Tracking Based on Square-root Cubature Kalman Filtering

Nonlinear state estimation and fusion tracking are always hot research topics for information processing. Compared to linear fusion tracking, nonlinear fusion tracking takes many new problems and challenges. Especially, the performances of fusion tracking, based on different nonlinear filters, are obviously different. The conventional nonlinear filters include extended Kalman filter (EKF), unsc...

متن کامل

Hybrid Kalman Filter-Fuzzy Logic Adaptive Multisensor Data Fusion Architectures

In this work the recently developed fuzzy logic-based adaptive Kalman filter (FL-AKF) is used to build adaptive centralized, decentralized, and federated Kalman filters for Adaptive MultiSensor Data Fusion (AMSDF). The adaptation carried out is in the sense of adaptively adjusting the measurement noise covariance matrix of each local FL-AKF to fit the actual statistics of the noise profiles pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014